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Exploring the therapeutic potential of psychedelics: Fear extinction mechanisms and
amygdala modulation

Thomas J. Kelly1 , and Qing-song Liu1

Classical psychedelics are increasingly receiving attention as potential therapeutic agents for treating post-traumatic stress disorder (PTSD).
Research has explored various classical psychedelics in the context of fear learning, recall, and extinction in rodents. We provide an overview of
the reported effects of these substances on behavioral responses to learned fear. The amygdala complex, a key brain region involved in fear
learning and extinction, plays a central role in these processes. We discuss how psychedelics interact with various cell types in the amygdala
and propose which neural circuits may be essential for the observed fear-suppressing effects following psychedelic administration in rodents.
The rodent amygdala has functional homology with the human amygdala. Thus, insights gained from preclinical studies can inform the design
and implementation of clinical trials for psychedelic-assisted psychotherapy for PTSD. Finally, we stress the importance of considering
compound-specific pharmacology and the acute duration of action as key factors in guiding the future direction of this field.
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Introduction
Fear and anxiety-related disorders, such as posttraumatic stress disor-
der (PTSD), specific phobias, and generalized anxiety disorder, present
significant challenges for both patients and clinicians. Despite advance-
ments in traditional therapeutic approaches, such as cognitive-behavioral
therapy and exposure therapy, a substantial proportion of individuals
with these disorders continue to experience persistent symptoms and
impaired quality of life (1, 2). The mechanisms underlying the thera-
peutic effects of exposure therapy have been explored in rodent mod-
els utilizing classical fear conditioning and extinction paradigms (3). The
neural substrates implicated in fear extinction in rodents are compara-
ble to those recruited during exposure therapy in humans (4). In recent
years, there has been a resurgence of interest in the therapeutic poten-
tial of psychedelic substances, such as psilocybin and 3,4-methylenedioxy
methamphetamine (MDMA), for the treatment of fear and anxiety-based
disorders (5). Clinical trials assessing the efficacy of MDMA-assisted psy-
chotherapy for the treatment of PTSD have shown promising results (6, 7),
and trials for psilocybin-assisted therapy for the same indication are on-
going. A prevailing view is that psychedelics induce enduring therapeutic
effects by enhancing structural plasticity of cortical neurons (8–10). This
viewpoint stems from observations that a single dose of a psychedelic
induces both sustained changes in cortical dendritic spine density and
sustained antidepressant-like effects in rodent models of despair. In this
perspective article, we propose that the fear-associated environmental
cues may activate excitatory principal neurons in the amygdala, while
psychedelics acutely suppress fear responses by enhancing GABAergic in-
hibition of these principal neurons. The opposing effects on neuronal ac-
tivity in the amygdala may provide a basis for understanding psychedelic-
assisted treatment for fear-based disorders.

Classical Psychedelics Acutely Suppress Learned Fear Responses
Classical psychedelics induce a characteristic 5-HT2A receptor–dependent
head twitch response in rodents (11, 12) that correlates with hallu-
cinogenic potency in humans (13). Indeed, the 5-HT2A receptor antago-
nist ketanserin dose-dependently blocks subjective psychedelic effects
in humans (14). It has been postulated that the therapeutic effects of
classical psychedelics rely on prolonged neuroplastic changes in the
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cortex after the acute drug effects have worn off (8, 9, 15–17). In the
case of fear extinction learning, the preclinical data have not directly sup-
ported this model of action. Studies in mice have demonstrated that clas-
sical psychedelics reduce freezing responses to conditioned auditory fear
cues (18–24). However, fear suppression to conditioned cues wanes as the
acute effects of classical psychedelics subside (20). In contrast, the height
of psychedelic-induced structural plasticity in the cortex is apparent long
after the drug has worn off (1–3 days) (9). Thus, psychedelics induce an
acute suppression of learned fear that is unlikely to depend on structural
neuronal plasticity.

The magnitude of psychedelic-induced fear suppression appears to
rely on drug dosage, and timing of the dose, while sustained effects
appear to rely on the specific fear extinction paradigm psychedelic treat-
ment is paired with (See Table 1 for summary). Notably, studies that
paired psychedelic treatment with fewer conditioned fear cue presenta-
tions (≤12), or a single 3-min tone showed enhanced extinction retention
the following day (21, 22), while studies that paired a higher number of
fear cues (20–40 tones) with psychedelic treatment showed no difference
in extinction retention between treatment and control groups 24 h later
(19, 20). A larger number of cue presentations strengthens fear extinc-
tion within the session but also normalizes freezing levels between drug
treatment groups by the end of the extinction session. Thus, the timing,
dose, and number of cue presentations during psychedelic-paired fear ex-
tinction likely determine whether reductions in cue-induced freezing are
observed at later timepoints.

Regardless of the fear extinction protocol that is used, the acute
fear-suppressing effect of classical psychedelics likely depends on
5-HT2A receptor agonism as full knockout of the receptor prevented
the acute fear-suppressing effect of the full 5-HT2A/2C agonist 2,5-
dimethoxy-4-iodoamphetamine (DOI) (19), and systemic injection of the
selective 5-HT2A antagonist volinanserin (also known as MDL 100907 or
M100907) prevented the acute fear-suppressing effects of psilocybin and
4-(2-((2-hydroxybenzyl)amino)ethyl)-2,5-dimethoxybenzonitrile (25CN-
NBOH) (18). Overall, these data suggest that 5-HT2A receptor agonism is
required for the acute fear-suppressing effects of classical psychedelic
drugs, but the enduring effects on fear behavior are highly dependent on
the specific extinction paradigm psychedelic treatment is paired with.
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Table 1. Overview of the doses, timing, and fear-suppressing effects of various classical psychedelics

Compound Mechanism Dose and Timing Effect on Conditioned Fear

Psilocybin/Psilocin Non-selective 5-HT receptor agonist,
low 5-HT2B receptor affinity (25)

2 mg/kg, 30 min before contextual test Suppression of freezing to context (18)
0.1, 0.5, and 2.5 mg/kg; 30 min before
cue presentation

0.5 and 2.5 mg/kg caused suppression
of cued freezing (23)

N,N-DMT Non-selective 5-HT receptor agonist
(25)

10 mg/kg, 1 h before cue presentation Suppression of cued freezing (22)

DOI Selective 5-HT2 agonist (26) 2 mg/kg, 30 min before cue
presentation

Suppression of cued freezing

2 mg/kg, 2 h after conditioning,
24 hours before cue presentation

Weak suppression of contextual
freezing (27)

2 mg/kg, 24 h before fear conditioning,
48 h before cue presentation

Weak suppression of contextual
freezing (27)

TCB-2 High affinity 5-HT2A agonist, off target
binding sites unknown (28)

1 mg/kg, Immediately after trace fear
conditioning

Enhanced cued freezing during recall
24 h later (24)

1 mg/kg, 30 min before cue
presentation

Suppressed cued freezing (24)

1 mg/kg, 30 min before context test Suppressed contextual freezing (18)
4-OH-DiPT Modestly selective for 5-HT2A/B

receptors over 5-HT2C and 5-HT1
receptor family (20)

3 mg/kg, 30 min before extinction No suppression of cued free (20)
3 mg/kg, 5 min before extinction Suppression of cued freezing (20)

25CN-NBOH High-affinity 5-HT2A receptor agonist,
moderate selectivity over 5-HT2B/C
receptors (29)

3 mg/kg, 30 min before contextual test Suppression of freezing to context (18)

The Amygdala Plays a Crucial Role in the Fear-Suppressing Effect
of Psychedelics
The locus whereby 5-HT2A agonism suppresses conditioned fear is an area
of ongoing investigation. Fear extinction is a complex behavior which
involves processing salient stimuli, responding to expected stimuli out-
comes, and adjusting responses to these outcomes over time (30). The
hippocampus, amygdala complex, and prefrontal cortex (PFC) play dis-
tinct roles in the extinction of fear (31); in-depth reviews can be found
elsewhere (32–34). The 5-HT2A receptor is expressed in all these re-
gions (35–37), and its collective activation at each region in vivo likely
contributes to the acute fear-suppressing effect of systemically admin-
istered classical psychedelics. However, local infusion of DOI into the
amygdala complex, and not the medial PFC most closely resembles its
fear-suppressing effect after systemic injection (19). This suggests that
activation of the 5-HT2A receptor in one or more amygdala nuclei is neces-
sary for the acute fear-suppressing effects of classical psychedelic drugs
in rodents.

The amygdala complex is commonly broken into the central (CeA)
and basolateral complex. The basolateral complex is further divided into
the lateral amygdala (LA), basolateral amygdala (BLA), and basomedial
amygdala (BMA) (38). CeA, LA, BMA, and BLA have anterior-posterior het-
erogeneity and contain subregions with distinct functions (38). The LA
is positioned immediately dorsal to the BLA and has high expression of
Htr2a mRNA (20). During auditory fear conditioning, synaptic inputs from
auditory and somatosensory cortex converge onto LA neurons and induce
synaptic strengthening (39). The depolarization of LA neurons induced
by glutamate release from cortical input neurons (40–42) causes calcium
influx through NMDA receptors, AMPA receptor surface trafficking, and
sustained synaptic potentiation (43, 44). Local infusion of the NMDA an-
tagonist APV into the amygdala during fear conditioning impairs cue-
outcome association (45). Thus, simultaneous excitation from auditory
and somatosensory inputs to lateral amygdala principal neurons led to
NMDA-dependent synaptic strengthening and fear learning. Activation of
the 5-HT2A receptor in LA neurons during fear conditioning could induce
depolarization and calcium influx through Gq-protein dissociation (46).
It is plausible that depolarization via 5-HT2A receptor activation could
lower the threshold for Hebbian-based forms of plasticity that occur be-
tween LA neurons and their somatosensory and auditory inputs during
fear learning. Strengthened inputs to LA neurons could potentially re-

sult in heighted fear responses during a recall event the following day.
This idea has not been directly tested yet, but may be difficult to distin-
guish from 5-HT2A–mediated enhancement of memory consolidation af-
ter fear conditioning procedures. For example, the administration of TCB-
2 shortly after fear conditioning led to enhancement of fear learning the
following day (24). On the other hand, administration of DOI prior to cued
fear recall suppresses freezing, yet, increases expression of the immedi-
ate early gene c-Fos in the LA (19). Thus, psychedelic-induced activation
of LA neurons, might enhance or disrupt conditioned fear responses de-
pending on the administration timepoint.

The BLA is directly below the LA and is comprised of ∼80% excita-
tory neurons and ∼20% inhibitory GABAergic neurons (20). While the BLA
contains slightly more GABA neurons than the LA (47), the expression
of 5-HT2A receptor mRNA is substantially lower in the BLA compared to
the LA, and has higher localization to inhibitory neurons (20). Notably,
not all GABA neurons expressed Htr2a mRNA in the above study. How-
ever, RNA-sequencing has characterized the expression of Htr2a mRNA
across the mouse brain in great detail including BLA inhibitory neuronal
subtypes (48). The BLA contains four major populations of interneurons
which express either parvalbumin (PV+), somatostatin (SST+), vasoactive
intestinal polypeptide (VIP+), or cholecystokinin (CCK+) and have differ-
ential roles in fear encoding and expression (49). The specific subpopu-
lation of inhibitory BLA neurons which express 5-HT2A receptor protein
is unclear. Studies show conflicting results, 5-HT2A receptor expression
has been shown to be restricted to only PV+ (50), both PV+ and SST+
(37), or widespread expression including excitatory neurons, although
most accounts show expression localized to post synaptic soma and den-
dritic sites (51). Ex vivo slice electrophysiology experiments provide some
clues as to which BLA interneuron population expresses the 5HT2A recep-
tor. Bath application of serotonin enhances the frequency and amplitude
of spontaneous inhibitory postsynaptic currents (sIPSCs) in BLA neurons,
an effect which can be blocked by the selective 5-HT2A receptor antag-
onist volinanserin (50, 52). The increase in sIPSC frequency and ampli-
tude is likely due to enhanced action potential firing from one of the lo-
cal interneuron populations as focal application of the 5-HT2A receptor
agonists 4-OH-DIPT or α-methyl-5-hydroxytryptamine leads to interneu-
ron depolarization and action potential firing (20, 53). Psychedelics likely
exert comparable interneuron-mediated inhibition in vivo as the num-
ber of BLA neurons expressing the immediate early gene c-Fos were
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Figure 1. Schematic of a theoretical mechanism for psychedelic-induced fear
suppression. Activation of excitatory inputs to BLA principal neurons drives
fear responses during cue presentation. 5-HT2A receptor agonists activate PV
neurons which release GABA to inhibit principal neuron activity and reduce fear
responses to cues. Created with BioRender.

decreased in psilocybin-treated mice compared to saline-treated controls
(54). Moreover, ex vivo activation of Gq-DREADDs expressed on BLA PV+
neurons mimics the 5-HT2A receptor–mediated enhancement of sIPSCs in
BLA neurons (52). Thus, 5-HT2A receptor–mediated activation of PV neu-
rons likely causes inhibition of BLA principal neurons.

Modulation of PV+ neuron activity in the BLA during fear conditioning
or extinction leads to distinct outcomes in fear expression. Gq-mediated
activation of BLA PV+ interneurons during fear conditioning enhances
fear expression one day later (52). While optogenetic activation of PV+
neurons during fear extinction suppresses freezing (55) and chemoge-
netic inhibition of BLA parvalbumin neurons enhances freezing in mice
that have undergone extinction (56). Agonism or antagonism of the
5-HT2A receptor at similar timepoints induces a comparable pattern of
behavior as BLA PV+ neuron activation or inhibition, respectively (Fig. 1).
Administration of the potent 5-HT2A receptor agonist TCB-2 shortly
after fear conditioning led to enhanced fear expression one day later, yet
administration of TCB-2 prior to fear extinction suppressed cue-induced
freezing (24). Systemic administration of the selective 5-HT2A receptor
antagonist volinanserin at the same timepoints in the above study showed
opposite effects on fear expression, suggesting the behavioral effects of
TCB-2 in this paradigm were dependent on 5-HT2A receptor activation
(24). One caveat is that while TCB-2 is a highly potent 5-HT2A recep-
tor agonist, its selectivity has not been established (57). Taken together,
these studies indicate that the acute effect of 5-HT2A receptor activation
leads to PV interneuron-mediated inhibition of excitatory BLA neurons
and may differentially augment fearful responses depending on the ad-
ministration timepoint. Future experiments should directly test this po-
tential mechanism in vivo.

The CeA has also been reported to express the 5-HT2A receptor on
SST+ interneurons (58). Chemogenetic inhibition of 5-HT2A

+ CeA neurons
reduces freezing to learned fear cues, while chemogenetic activation had

no effect on freezing to learned fear cues (58). However, the same study
found that activation of 5-HT2A

+ CeA neurons reduced freezing to innate
fear (58), which might contribute to the acute anxiolytic-like effect of the
potent 5-HT2A receptor agonist DOI in the elevated zero maze and ele-
vated plus maze (19). Interestingly, systemic administration of psilocin,
the active metabolite of psilocybin, led to an acute increase in CeA activ-
ity in both male and female rats, while it enhanced stimulus-specific CeA
reactivity solely in females, rather than males (59). This raises the possi-
bility that the CeA may contribute to some of the sex differences in fear
and avoidance behaviors observed after administration of psychedelics in
rodents (20, 60, 61).

Fear Induces Amygdala Activation in Rodents and Humans
Fear extinction requires altering the perceived threat of a stimulus, a con-
cept not directly measurable in rodents. Human trials are ultimately re-
quired to understand how psychedelics alter the perception of threat.
The neurobiological mechanisms underlying fear responses are relatively
well conserved across mammalian species. RNA-sequencing experiments
show that humans and mice contain similar proportions of excitatory and
inhibitory neurons in the amygdala (62). Functional studies in rodents
and humans have demonstrated the critical role of the amygdala in fear
processing and fear-related behaviors. For example, lesion studies in rats
have shown that damage to the amygdala impairs the acquisition of con-
ditioned fear (63). Excitatory BLA neurons are activated by fear cue pre-
sentation in rats, and optogenetic inhibition of the same neurons impairs
cue-induced freezing during extinction (55). Moreover, functional imag-
ing in humans revealed increased amygdala activity in response to fear
conditioning (64). While in vivo field potential recordings of the amygdala
in awake humans demonstrated increased activity upon the presentation
of fearful faces (65). In contrast, reductions in amygdala activity are asso-
ciated with the early phase of fear extinction in humans (66), and humans
with bilateral amygdala lesions do not display typical fear responses (67).
Thus, fear learning, and expression require excitatory amygdala activity in
both rodents and humans.

Implications for the Treatment of PTSD
Functional magnetic resonance imaging has shown that acute psilocybin
administration to human subjects reduced amygdala reactivity to both
negative and neutral stimuli compared to placebo administration (68).
In the same study, the reduction in blood oxygen level-dependent sig-
nal in the right amygdala was correlated with elevated mood 210 min
after psilocybin administration (68). Hyperactivity of the amygdala is
implicated in PTSD (69, 70). Thus, classical psychedelics and exposure
therapy may work synergistically to dampen amygdala activity and re-
duce PTSD symptoms. Clinical trials investigating the efficacy of psilo-
cybin for treating PTSD are ongoing (NCT05243329, NCT05312151,
NCT05554094) and some clinical trials integrate exposure therapy into
their design (71). It is critical that future clinical trials investigate how
modulating the number of trauma exposures or type of psychotherapy
accompanied by psychedelic administration influences long-term out-
comes in patients with PTSD. It has been suggested that the psycholog-
ical insight gained from the psychedelic-assisted treatment can improve
an individual’s ability to respond to subsequent stressors more adap-
tively (72), which is consistent with the findings that the intensity of
the acute psychedelic experience is associated with improved metrics of
mental health (73). Thus, the type of therapy administered, and inten-
sity of psychedelic effects will ultimately inform the long-term behavioral
changes induced by psychedelic assisted psychotherapy for fear-based
disorders.

Pharmacological Considerations
Agonism of the 5-HT2A receptor is responsible for the acute illusory
and sensory effects of psychedelic drugs, However, nearly all psychedelic
drugs have activity at other receptors which augments their activity at the
level of neural circuits and systems. The differential effects of serotonin
receptors on anxiety and fear are reviewed elsewhere (74). It was recently
shown that several commonly studied classical psychedelics such as N,N-
DMT, 5-MeO-DMT, psilocin, and lysergic acid diethylamide have higher
efficacy at the Gi/o-coupled 5-HT1A receptor compared to the 5HT2A
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receptor (75). The 5-HT1A receptor is expressed on the presynaptic termi-
nals of excitatory dorsal raphe serotonergic neurons that project to the
amygdala (74). 5-HT1A receptor knockout mice display anxiety-like be-
havior (76) and elevated freezing responses immediately after foot shock
(77). However, global 5-HT1A receptor knockout does not significantly
alter cue-induced freezing during extinction (78). Bilateral microinjec-
tion of the 5-HT1A agonist flesinoxan into the amygdala of rats reduced
freezing to conditioned fear cues (79). It is unknown whether knockout
of the 5-HT1A receptor alters the acute fear-suppressing effect of clas-
sical psychedelics. However, 5-HT1A receptor agonists such as buspirone
are used clinically for the treatment of generalized anxiety disorder (80).
Thus, it is possible that 5-HT1A agonism may contribute to some of the
therapeutic effects of psychedelics on anxiety and fear expression.

The 4–8 h duration of acute psychedelic effects from psilocybin will
be costly for patients and difficult to implement as a treatment for PTSD.
While psychedelic-assisted psychotherapy may be a promising treatment
for PTSD and other fear-based disorders, short-acting psychedelics such
as 4-OH-DiPT, N, N-DMT, and 5-MeO-DMT may be more practical in this
regard. A striking case study observed robust symptom reduction in a
patient with PTSD following a single dose of 5-MeO-DMT (81). Consec-
utive treatment with Ibogaine and 5-MeO-DMT reduced self-reported
PTSD symptoms in veterans and led to sustained clinical benefits up to
6 months later (82). The psychoactive effects from 5-MeO-DMT inhalation
can begin within 1–50 s (83), with a total duration of up to ∼30 min (84).
However, 5-MeO-DMT has a high incidence of flashbacks (also termed re-
activation) (85). Instances of traumatic memories resurfacing during or
shortly after psychedelic-assisted therapy have been documented (86,
87), which may be more prevalent with 5-MeO-DMT compared to other
psychedelic compounds. 4-OH-DiPT a short-acting tryptamine derivative
with high affinity for the 5-HT2A receptor (25) and has been shown to
suppress learned fear responses mice (20). A 4-OH-DiPT prodrug is cur-
rently under investigation for postpartum depression (U.S. Patent No.
11,292,765). 4-OH-DiPT has modest selectivity for 5-HT2A receptor over
the 5-HT2C receptor but demonstrates near full agonism at the 5-HT2B
receptor (20). Chronic agonism at the 5-HT2B receptor is associated with
cardiac valvulopathy (88). While this is less of a concern with single or
infrequent doses used in single sessions of psychedelic-assisted psy-
chotherapy, compounds with reduced 5-HT2B receptor agonism could mit-
igate the risk of developing cardiac valvulopathy. MDMA, which has been
shown to reduce the affective symptoms of PTSD (6), blocks reuptake
of serotonin and indirectly agonizes the 5-HT2B receptor (89). The in-
cidence of cardiac valvulopathy is higher in MDMA users compared to
non-users (90). The development of short-acting psychedelics that lack
5-HT2B receptor agonism may be highly valuable clinical tools.

Overall, the long duration of acute psychedelic effects from com-
pounds like psilocybin may make them difficult to scale as widespread
PTSD treatments. Short-acting psychedelics may be promising alterna-
tives. Special consideration should be given to the specific receptors each
psychedelic drug activates in addition to the 5-HT2A receptor. Ongoing
investigation into their safety and efficacy in psychedelic-assisted psy-
chotherapy for PTSD is warranted.

Conclusion
Despite advancements in traditional therapeutic approaches fear and
anxiety-based disorders remain challenging to treat. While exposure ther-
apy has been effective in many cases of PTSD, the resurgence of interest
in psychedelic substances offers promising avenues for treatment. Clas-
sical psychedelics have been shown to acutely suppress fear responses
in rodent models of fear, suggesting potential therapeutic applications
for fear-related disorders. Understanding the neural mechanisms under-
lying these effects, particularly in regions such as the amygdala, is crucial
for developing effective psychedelic-assisted psychotherapy treatments.
Additional consideration for the pharmacological profile of psychedelics,
their duration of action, and the therapeutic context in which they are ad-
ministered is essential for optimizing treatment strategies. Short-acting
psychedelics may be promising alternatives treatments for PTSD. Further
research into their safety and efficacy is needed to address the persistent
challenges posed by fear-based disorders.
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